OFFSET
1,1
COMMENTS
Numbers whose infinitary aliquot sequences end in an infinitary perfect number, but are not infinitary perfect numbers themselves.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..72
Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
EXAMPLE
a(5) = 72 because the fifth non-infinitary perfect number whose infinitary aliquot sequence ends in an infinitary perfect number is 72.
MATHEMATICA
ExponentList[n_Integer, factors_List]:={#, IntegerExponent[n, # ]}&/@factors; InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g]==g][ #, Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #, factors]&/@d]], _?(And@@#&), {1}]] ]] ] Null; properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k; g[n_] := If[n > 0, properinfinitarydivisorsum[n], 0]; iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; InfinitaryPerfectNumberQ[0]=False; InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k, True, False]; Select[Range[750], InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] && !InfinitaryPerfectNumberQ[ # ]&]
f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; s[n_] := Times @@ f @@@ FactorInteger[n] - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, n != v[[-2]] == v[[-1]] > 0]; Select[Range[839], q] (* Amiram Eldar, Mar 11 2023 *)
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Ant King, Jan 26 2007
STATUS
approved