login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367449
Numbers k for which there are exactly k pairs (i, j), 1 <= i < j < k, such that i + j is a divisor of k.
0
30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 208, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1312, 1338, 1362, 1374
OFFSET
1,1
COMMENTS
Numbers k >= 1 for which A367588(k) = Sum_{d|k} floor((d-1)/2) = k;
Numbers k >= 1 for which A000203(k) - A000005(k) - A183063(k) = 2*k.
The sequence is infinite because all numbers of the form m = 6*p, p >= 5 prime (A138636), are terms.
Indeed: sigma(6*p) - tau(6(p) - A183063(6*p) = 3*4*(p + 1) - 8 - 4 = 12*p = 2*m.
If m = 2^k*p, p = 2^(k + 1) - 4*k - 3 prime number, then m is a term. Indeed: sigma(m) - tau(m) - A183063(m) = (2^(k + 1) - 1)*(p + 1) - 2*(k + 1) - 2*k = 2*m.
EXAMPLE
30 is a term since it has exactly 30 pairs (i,j): (1, 2), (2, 3), (1, 4), (2, 4), (1, 5), (4, 6), (3, 7), (2, 8), (7, 8), (1,9), (6, 9), (5, 10), (4, 11), (3, 12), (2, 13), (1, 14), (14, 16), (13, 17),(12, 18), (11, 19), (10, 20), (9, 21), (8, 22), (7, 23), (6, 24), (5, 25), (4,26), (3, 27), (2, 28), (1, 29).
MAPLE
filter:= proc(n) uses numtheory;
sigma(n) - tau(n) - `if`(n::even, tau(n/2), 0) = 2*n
end proc:
select(filter, [$1..10000]); # Robert Israel, Dec 12 2023
MATHEMATICA
f1[p_, e_] := e+1; f1[2, e_] := 2*e+1; f2[p_, e_] := (p^(e+1)-1)/(p-1); s[1] = 0; s[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct - Times @@ f1 @@@ fct]; Select[Range[1400], s[#] == 2*# &] (* Amiram Eldar, Dec 16 2023 *)
PROG
(Magma) [k:k in [1..1000]|(DivisorSigma(1, k)-#Divisors(k)-#[d:d in Divisors(k)| IsEven(d)]) eq 2*k ];
(PARI) isok(k) = sumdiv(k, d, (d-1)\2) == k; \\ Michel Marcus, Dec 19 2023
CROSSREFS
Fixed points of A367588.
Sequence in context: A378509 A127663 A008885 * A097036 A090790 A090800
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Dec 10 2023
STATUS
approved