login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367448
Number of chordal graphs on n vertices with a fixed perfect elimination ordering (e.g., 1,2,3,...,n)
0
1, 2, 7, 39, 324, 3839, 62973, 1402792, 41946319, 1673580047, 88922215948, 6297931501377, 596303138919753, 75787556639822258, 12991109500044250083, 3018313885461813882295, 955168488432838276254520, 413639698066068492610331231, 246197679553110860511406200613, 202212713843977008653180874488520
OFFSET
1,2
COMMENTS
a(n) is the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple a<b<c we have X(ab)X(ac)X(bc) not equal to -++.
PROG
(PARI)
a(n)={
local(M=Map(Mat([1, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(proc(p, m)=for(k=0, poldegree(p), acc(p + x*(1 + x)^k, polcoef(p, k)*m)));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], proc(src[i, 1], src[i, 2])));
vecsum(Mat(M)[, 2])
} \\ Andrew Howroyd, Jan 06 2024
CROSSREFS
Cf. A048192.
Sequence in context: A300519 A103365 A145086 * A052443 A153744 A266422
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 06 2024
STATUS
approved