Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jan 06 2024 22:58:44
%S 1,2,7,39,324,3839,62973,1402792,41946319,1673580047,88922215948,
%T 6297931501377,596303138919753,75787556639822258,12991109500044250083,
%U 3018313885461813882295,955168488432838276254520,413639698066068492610331231,246197679553110860511406200613,202212713843977008653180874488520
%N Number of chordal graphs on n vertices with a fixed perfect elimination ordering (e.g., 1,2,3,...,n)
%C a(n) is the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple a<b<c we have X(ab)X(ac)X(bc) not equal to -++.
%o (PARI)
%o a(n)={
%o local(M=Map(Mat([1, 1])));
%o my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
%o my(proc(p,m)=for(k=0, poldegree(p), acc(p + x*(1 + x)^k, polcoef(p,k)*m)));
%o for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], proc(src[i, 1], src[i, 2])));
%o vecsum(Mat(M)[,2])
%o } \\ _Andrew Howroyd_, Jan 06 2024
%Y Cf. A048192.
%K nonn
%O 1,2
%A _Manfred Scheucher_ and _Robert Lauff_, Jan 05 2024
%E Terms a(12) and beyond from _Andrew Howroyd_, Jan 06 2024