login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367452
Number of semiprime divisors of the n-th squarefree number (A005117).
1
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 3, 0, 1, 3, 0, 0, 1, 1, 3, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 3, 0, 3, 1, 0, 0, 3, 1, 0, 3, 1, 1, 1, 1, 1, 0, 1, 3, 0, 1, 1, 0, 3, 0, 1, 1, 1, 1, 1, 0, 0, 3, 1, 0, 1
OFFSET
1,19
FORMULA
a(n) = A086971(A005117(n)).
a(n) = c*(c-1)/2, where c = A001221(A005117(n)).
EXAMPLE
a(19) = 3 since A005117(19) = 30 and 30 has 3 semiprime divisors, namely {6, 10, 15}.
MATHEMATICA
Table[If[PrimeNu[n] == PrimeOmega[n], PrimeNu[n] (PrimeNu[n] - 1)/2, {}], {n, 200}] // Flatten
PROG
(PARI) apply(x->(sumdiv(x, d, bigomega(d)==2)), select(issquarefree, [1..300])) \\ Michel Marcus, Nov 22 2023
(Python)
from math import isqrt
from sympy import mobius, primenu
def A367452(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return (c:=primenu(m))*(c-1)>>1 # Chai Wah Wu, Aug 12 2024
CROSSREFS
Cf. A001221 (omega), A001358 (semiprimes), A005117 (squarefree numbers), A086971.
Sequence in context: A036860 A119624 A213727 * A119612 A101949 A124796
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Nov 18 2023
STATUS
approved