OFFSET
1,12
COMMENTS
Inverse Moebius transform of A064911. - Jonathan Vos Post, Dec 08 2004
REFERENCES
G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
E. A. Bender and J. R. Goldman, On the Applications of Mobius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, (1975), 789-803.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms.
Eric Weisstein's World of Mathematics, Semiprime.
Eric Weisstein's World of Mathematics, Divisor Function.
Eric Weisstein's World of Mathematics, Moebius Transform.
FORMULA
a(n) = omega(n/core(n)) + binomial(omega(n),2) = A001221(n/A007913(n)) + binomial(A001221(n),2) = A056170(n) + A079275(n). - Rick L. Shepherd, Mar 06 2006
From Reinhard Zumkeller, Dec 14 2012: (Start)
a(A220264(n)) = n and a(m) <> n for m < A220264(n); a(A008578(n)) = 0; a(A002808(n)) > 0; for n > 1: a(A102466(n)) <= 1 and a(A102467(n)) > 1; A066247(n) = A057427(a(n)). (End)
G.f.: Sum_{k = p*q, p prime, q prime} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 25 2017
MAPLE
a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l)
end:
seq(a(n), n=1..120); # Alois P. Heinz, Jul 18 2013
MATHEMATICA
semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *)
a[n_] := Count[e = FactorInteger[n][[;; , 2]], _?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
PROG
(PARI) /* The following definitions of a(n) are equivalent. */
a(n) = sumdiv(n, d, bigomega(d)==2)
a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1, j, f[m, 2]>=2) + binomial(j, 2)
a(n) = f=factor(n); j=omega(n); sum(m=1, j, f[m, 2]>=2) + binomial(j, 2)
a(n) = omega(n/core(n)) + binomial(omega(n), 2)
/* Rick L. Shepherd, Mar 06 2006 */
(Haskell)
a086971 = sum . map a064911 . a027750_row
-- Reinhard Zumkeller, Dec 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 22 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 28 2006
STATUS
approved