login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086971
Number of semiprime divisors of n.
33
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3
OFFSET
1,12
COMMENTS
Inverse Moebius transform of A064911. - Jonathan Vos Post, Dec 08 2004
REFERENCES
G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.
LINKS
E. A. Bender and J. R. Goldman, On the Applications of Mobius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, (1975), 789-803.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms.
Eric Weisstein's World of Mathematics, Semiprime.
Eric Weisstein's World of Mathematics, Divisor Function.
Eric Weisstein's World of Mathematics, Moebius Transform.
FORMULA
a(n) = A106404(n) + A106405(n). - Reinhard Zumkeller, May 02 2005
a(n) = omega(n/core(n)) + binomial(omega(n),2) = A001221(n/A007913(n)) + binomial(A001221(n),2) = A056170(n) + A079275(n). - Rick L. Shepherd, Mar 06 2006
From Reinhard Zumkeller, Dec 14 2012: (Start)
a(n) = Sum_{k=1..A000005(n)} A064911(A027750(n,k)).
a(A220264(n)) = n and a(m) <> n for m < A220264(n); a(A008578(n)) = 0; a(A002808(n)) > 0; for n > 1: a(A102466(n)) <= 1 and a(A102467(n)) > 1; A066247(n) = A057427(a(n)). (End)
G.f.: Sum_{k = p*q, p prime, q prime} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 25 2017
MAPLE
a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l)
end:
seq(a(n), n=1..120); # Alois P. Heinz, Jul 18 2013
MATHEMATICA
semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *)
a[n_] := Count[e = FactorInteger[n][[;; , 2]], _?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
PROG
(PARI) /* The following definitions of a(n) are equivalent. */
a(n) = sumdiv(n, d, bigomega(d)==2)
a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1, j, f[m, 2]>=2) + binomial(j, 2)
a(n) = f=factor(n); j=omega(n); sum(m=1, j, f[m, 2]>=2) + binomial(j, 2)
a(n) = omega(n/core(n)) + binomial(omega(n), 2)
/* Rick L. Shepherd, Mar 06 2006 */
(Haskell)
a086971 = sum . map a064911 . a027750_row
-- Reinhard Zumkeller, Dec 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 22 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 28 2006
STATUS
approved