OFFSET
0,2
COMMENTS
Binomial transform of A057711 (without leading zero). Second binomial transform of (1,1,3,3,5,5,7,7,9,9,11,11,...).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Index entries for linear recurrences with constant coefficients, signature (7,-15,9).
FORMULA
a(n) = (1/2)*(A081038(n) + 1).
G.f.: (1-4*x+5*x^2)/((1-x)*(1-3*x)^2).
E.g.f.: (1/2)*( exp(x) + (2*x+1)*exp(3*x) ). - G. C. Greubel, Nov 24 2023
MATHEMATICA
Table[((2*n+3)*3^(n-1) +1)/2, {n, 0, 30}] (* G. C. Greubel, Nov 24 2023 *)
PROG
(Magma) [n*3^(n-1) + (3^n+1)/2: n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
(PARI) Vec((1-4*x+5*x^2)/((1-x)*(1-3*x)^2) + O(x^40)) \\ Michel Marcus, Mar 08 2016
(SageMath) [((2*n+3)*3^(n-1) +1)//2 for n in range(31)] # G. C. Greubel, Nov 24 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 26 2003
STATUS
approved