login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320827
G.f.: -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1).
4
-1, 1, 1, 3, 11, 41, 151, 549, 1977, 7075, 25229, 89831, 319881, 1140523, 4075321, 14603243, 52501659, 189440937, 686181711, 2495243373, 9109701699, 33388293177, 122840931891, 453622854873, 1681057537359, 6250742452125, 23316503569983, 87236431248445
OFFSET
0,4
LINKS
FORMULA
a(n) = (-4)^n*binomial(3/2, n)*((4/3)*n - 2 + hypergeom([1, -n], [5/2 - n], 3/4)).
D-finite with recurrence: a(n) = ((-90+66*n-12*n^2)*a(n-2) + (30-34*n+7*n^2)*a(n-1))/((n-4)*n) for n >= 5.
Expansion of -1/g.f. gives A029759.
a(n) = A320825(n) - A320826(n).
MAPLE
ogf := x -> -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1);
ser := series(ogf(x), x, 30); seq(coeff(ser, x, k), k=0..27);
# By recurrence:
a := proc(n) option remember; if n <= 4 then return [-1, 1, 1, 3, 11][n+1] fi;
((-90+66*n-12*n^2)*a(n-2)+(30-34*n+7*n^2)*a(n-1))/((n-4)*n) end:
seq(a(n), n=0..27);
MATHEMATICA
a[n_] := (-4)^n Binomial[3/2, n]((4/3)n - 2 + Hypergeometric2F1[1, -n, 5/2 - n, 3/4]); Table[a[n], {n, 0, 27}]
CoefficientList[Series[Sqrt[1-4*x]*(1-2*x)/(3*x-1), {x, 0, 40}], x] (* G. C. Greubel, Oct 27 2018 *)
PROG
(PARI) x='x+O('x^40); Vec(sqrt(1-4*x)*(1-2*x)/(3*x-1)) \\ G. C. Greubel, Oct 27 2018
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(1-4*x)*(1-2*x)/(3*x-1))); // G. C. Greubel, Oct 27 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Oct 23 2018
STATUS
approved