login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320830
E.g.f.: [Sum_{n>=0} x^n * exp(n^2*x)] * [Sum_{n>=0} x^n / exp(n^2*x)].
2
1, 2, 6, 30, 504, 11530, 250800, 7239974, 316070272, 15395970258, 814193153280, 53776871363182, 4193637641554944, 353769117203810906, 33739767209254672384, 3696794844865401890550, 443059728692677637406720, 57958478772549018401984674, 8422823140216886323795525632, 1335371306389226812255794229694
OFFSET
0,2
LINKS
FORMULA
E.g.f.: 1/(1-x^2) + 2 * Sum_{n>=1} Sum_{k>=0} x^(n + 2*k) * cosh((n^2 + 2*n*k)*x).
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 30*x^3/3! + 504*x^4/4! + 11530*x^5/5! + 250800*x^6/6! + 7239974*x^7/7! + 316070272*x^8/8! + 15395970258*x^9/9! + ...
such that A(x) = P(x) * Q(x) where
P(x) = 1 + x*exp(x) + x^2*exp(4*x) + x^3*exp(9*x) + x^4*exp(16*x) + x^5*exp(25*x) + x^6*exp(36*x) + x^7*exp(49*x) + ... + x^n * exp(n^2*x) + ...
Q(x) = 1 + x/exp(x) + x^2/exp(4*x) + x^3/exp(9*x) + x^4/exp(16*x) + x^5/exp(25*x) + x^6/exp(36*x) + x^7/exp(49*x) + ... + x^n / exp(n^2*x) + ...
Explicitly,
P(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 436*x^4/4! + 8185*x^5/5! + 206046*x^6/6! + 6622945*x^7/7! + 263313688*x^8/8! + ... + A193421(n)*x^n/n! + ...
Q(x) = 1 + x - 15*x^3/3! - 4*x^4/4! + 1785*x^5/5! - 4926*x^6/6! - 707231*x^7/7! + 9681384*x^8/8! + 593043921*x^9/9! + ...
RELATED SERIES.
log(A(x)) = 2*x + 2*x^2/2! + 10*x^3/3! + 348*x^4/4! + 7138*x^5/5! + 127440*x^6/6! + 4143914*x^7/7! + 207951968*x^8/8! + 9863732610*x^9/9! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^m*exp(m^2*x + x*O(x^n)) ) * sum(m=0, n, x^m*exp(-m^2*x + x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A = 1/(1-x^2 + x*O(x^n)) + 2*sum(m=1, n, sum(k=0, n-m, x^(m + 2*k)*cosh((m^2 + 2*m*k)*x + x*O(x^n)) ) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A092023 A112723 A326867 * A074777 A007280 A280260
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2018
STATUS
approved