The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193421 E.g.f.: Sum_{n>=0} x^n * exp(n^2*x). 12
 1, 1, 4, 33, 436, 8185, 206046, 6622945, 263313688, 12627149265, 716160702970, 47284266221401, 3587061106583604, 309251317536586633, 30017652739792964806, 3254137305364883664945, 391238883136463492841136, 51846176797206158144925985 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: A(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((4*k-3)*x)) / (1 - x*exp((4*k-1)*x)), due to a q-series identity. Let q = exp(x), then the e.g.f. equals the continued fraction: A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...))))))))), due to a partial elliptic theta function identity. a(n) = n! * Sum_{k=0..n} (n-k)^(2*k)/k!. - Paul D. Hanna, Jan 19 2013 O.g.f.: Sum_{k>=0} k! * x^k / (1 - k^2*x)^(k+1). - Ilya Gutkovskiy, Jul 02 2019 EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 436*x^4/4! + 8185*x^5/5! + 206046*x^6/6! +... where A(x) = 1 + x*exp(x) + x^2*exp(4*x) + x^3*exp(9*x) + x^4*exp(16*x) +... By a q-series identity: A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +... MATHEMATICA Flatten[{1, Table[n! * Sum[(n-k)^(2*k)/k!, {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2014 *) PROG (PARI) {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m^2*x+x*O(x^n))); n!*polcoeff(Egf, n)} (PARI) /* q-series identity: */ {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((4*k-3)*x+x*O(x^n)))/(1-x*exp((4*k-1)*x+x*O(x^n)))))); n!*polcoeff(A, n)} (PARI) {a(n) = n!*sum(k=0, n, (n-k)^(2*k)/k!)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A193467. Sequence in context: A119821 A102321 A268293 * A179421 A296835 A331690 Adjacent sequences:  A193418 A193419 A193420 * A193422 A193423 A193424 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 04:22 EST 2021. Contains 349445 sequences. (Running on oeis4.)