login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193420
-log( Sum_{n>=0} (-x)^n/n!^3 ) = Sum_{n>=1} a(n)*x^n/n!^3.
3
1, 3, 46, 1899, 163476, 25333590, 6412369860, 2473269931755, 1379817056827720, 1069150908119474628, 1113779885682143602440, 1518901247410616194635510, 2651993653876241574715172280, 5817640695573490720735010689620
OFFSET
1,2
FORMULA
Equals column 0 of the matrix log of triangle T(n,k) = (-1)^(n-k)*C(n,k)^3.
a(n) = -(-1)^n + (1/n) * Sum_{k=1..n-1} (-1)^(n-k-1) * binomial(n,k)^3 * k * a(k). - Ilya Gutkovskiy, Jul 15 2021
EXAMPLE
L(x) = -log(1 - x + x^2/2!^3 - x^3/3!^3 + x^4/4!^3 - x^5/5!^3 +-...)
where
L(x) = x + 3*x^2/2!^3 + 46*x^3/3!^3 + 1899*x^4/4!^3 + 163476*x^5/5!^3 +...
ALTERNATE GENERATING METHOD.
A signed version of A181543(n,k) = C(n,k)^3 begins:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 64, 216, 64, 1;
1, 125, 1000, 1000, 125, 1; ...
The matrix log of triangle A181543 begins:
0;
1, 0;
-3, 8, 0;
46, -81, 27, 0;
-1899, 2944, -648, 64, 0;
163476, -237375, 46000, -3000, 125, 0; ...
in which this sequence (signed) is found in column 0.
PROG
(PARI) {a(n)=n!^3*polcoeff(-log(sum(m=0, n, (-x)^m/m!^3)+x*O(x^n)), n)}
(PARI) /* As Column 0 of the Matrix Log of signed Triangle A181543 */
{a(n)=local(L, M=matrix(n+1, n+1, r, c, if(r>=c, (-1)^(r-c)*binomial(r-1, c-1)^3)));
L=sum(n=1, #M, (M^0-M)^n/n); if(n<0, 0, L[n+1, 1])}
CROSSREFS
Cf. A002190 (variant), A181543.
Sequence in context: A124135 A307292 A307290 * A339177 A000576 A336829
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2011
STATUS
approved