The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102321 Column 0 of triangular matrix A102320, which satisfies T(n,k) = [T^2](n-1,k) when n>k>=0, with T(n,n) = (2*n+1). 2
 1, 1, 4, 33, 436, 8122, 197920, 6007205, 219413116, 9402081718, 463548752912, 25893783163498, 1618536618626888, 112053082721454708, 8518619080226661504, 705977323976245345133, 63382036275445226941548 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..16. FORMULA G.f.: 1 = Sum_{n>=0} a(n)*x^n*prod_{k=0, n} (1-(2k+1)*x) for n>0 with a(0)=1. EXAMPLE G.f.: 1 = (1-x) + 1*x*(1-x)(1-3x) + 4*x^2*(1-x)(1-3x)(1-5x) + ... + a(n)*x^n*(1-x)(1-3x)(1-5x)*..*(1-(2n+1)*x) + ... PROG (PARI) {a(n)=local(A=Mat(1), B); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=2*j-1, if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, 1])} (PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=0, k, 1-(2*j+1)*x+x*O(x^n))), n))} CROSSREFS Cf. A102087, A102323. Sequence in context: A277184 A192548 A119821 * A268293 A193421 A179421 Adjacent sequences: A102318 A102319 A102320 * A102322 A102323 A102324 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 17:52 EDT 2024. Contains 372880 sequences. (Running on oeis4.)