login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102321
Column 0 of triangular matrix A102320, which satisfies T(n,k) = [T^2](n-1,k) when n>k>=0, with T(n,n) = (2*n+1).
2
1, 1, 4, 33, 436, 8122, 197920, 6007205, 219413116, 9402081718, 463548752912, 25893783163498, 1618536618626888, 112053082721454708, 8518619080226661504, 705977323976245345133, 63382036275445226941548
OFFSET
0,3
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*x^n*prod_{k=0, n} (1-(2k+1)*x) for n>0 with a(0)=1.
EXAMPLE
G.f.: 1 = (1-x) + 1*x*(1-x)(1-3x) + 4*x^2*(1-x)(1-3x)(1-5x) + ... + a(n)*x^n*(1-x)(1-3x)(1-5x)*..*(1-(2n+1)*x) + ...
PROG
(PARI) {a(n)=local(A=Mat(1), B); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=2*j-1, if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, 1])}
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=0, k, 1-(2*j+1)*x+x*O(x^n))), n))}
CROSSREFS
Sequence in context: A277184 A192548 A119821 * A268293 A193421 A179421
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2005
STATUS
approved