login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102319
A mean binomial transform of the central binomial numbers.
1
1, 2, 7, 26, 107, 462, 2065, 9438, 43811, 205622, 972917, 4631838, 22157525, 106406978, 512629551, 2476289106, 11989326771, 58163714118, 282662269717, 1375801775214, 6705710840657, 32724623955882, 159880046446611
OFFSET
0,2
COMMENTS
Second binomial transform of A082758 (with interpolated zeros).
LINKS
FORMULA
G.f.: (1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(2*(n-2*k), n-2*k).
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*(1+(-1)^(n-k))/2.
E.g.f.: cosh(x)*exp(2*x)*I_0(2x). - Paul Barry, May 01 2005
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 29 2013
Conjecture: n*(n-1)*a(n) -4*(n-1)*(3*n-4)*a(n-1) +(53*n^2-221*n+232)*a(n-2) +8*(-13*n^2+85*n-134)*a(n-3) +(51*n^2-563*n+1308)*a(n-4) +4*(29*n-93)*(n-4)*a(n-5) -105*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Feb 20 2015
Conjecture:+n*(n-1)*(12*n^2-48*n+41)*a(n) -8*(n-1)*(12*n^3-54*n^2+65*n-17)*a(n-1) +2*(84*n^4-504*n^3+1025*n^2-775*n+131)*a(n-2) +8*(n-2)*(12*n^3-54*n^2+65*n-20)*a(n-3) -15*(n-2)*(n-3)*(12*n^2-24*n+5)*a(n-4)=0. - R. J. Mathar, Feb 20 2015
MAPLE
A102319 := proc(n)
add(binomial(n, k)*binomial(2*k, k)*(1+(-1)^(n-k))/2, k=0..n) ;
end proc: # R. J. Mathar, Feb 20 2015
MATHEMATICA
CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]+1/Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
PROG
(PARI) x='x+O('x^50); Vec((1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2) \\ G. C. Greubel, Mar 16 2017
CROSSREFS
Sequence in context: A150567 A000151 A150568 * A367236 A006603 A080244
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 04 2005
STATUS
approved