login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080244
Signed generalized Fibonacci numbers.
3
1, -2, 7, -26, 107, -468, 2141, -10124, 49101, -242934, 1221427, -6222838, 32056215, -166690696, 873798681, -4612654808, 24499322137, -130830894666, 702037771647, -3783431872018, 20469182526595, -111133368084892, 605312629105205, -3306633429423460, 18111655081108453
OFFSET
1,2
COMMENTS
Diagonal sums of triangle A080245
LINKS
FORMULA
G.f.: x*(-1-x+2*x^2+sqrt(1+6*x+x^2))/(2*x*(1+x+x^2-x^3)). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Conjecture: (n+1)*a(n) +(7*n-2)*a(n-1) +4*(2*n-1)*a(n-2) +6*(n-1)*a(n-3) +(-5*n+1)*a(n-4) +(-n+2)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
MAPLE
seq(coeff(convert(series((-1-x+2*x^2+sqrt(1+6*x+x^2))/(2*x*(1+x+x^2-x^3)), x, 50), polynom), x, i), i=0..30); (C. Ronaldo)
MATHEMATICA
CoefficientList[Series[(-1 - x + 2 x^2 + Sqrt[1 + 6 x + x^2]) / (2 x (1 + x + x^2 - x^3)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
CROSSREFS
|a(n)| = A006603.
Sequence in context: A102319 A367236 A006603 * A124542 A003447 A150569
KEYWORD
sign,easy
AUTHOR
Paul Barry, Feb 13 2003
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
G.f. adapted to the offset by Vincenzo Librandi, Aug 05 2013
STATUS
approved