login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102318
A mean binomial transform of the Catalan numbers.
0
1, 1, 3, 8, 27, 97, 373, 1493, 6163, 26027, 111897, 488006, 2153429, 9596199, 43121211, 195165576, 888861555, 4070582971, 18732710281, 86584519280, 401776434017, 1870983991035, 8740907398527, 40956401225597
OFFSET
0,3
COMMENTS
Average of binomial and inverse binomial transforms of the Catalan numbers A000108.
FORMULA
G.f.: (2-sqrt((1-3x)/(1+x))-sqrt((1-5x)/(1-x)))/(4x);
a(n)=sum{k=0..floor(n/2), binomial(n, 2k)C(n-2k)};
a(n)=sum{k=0..n, binomial(n, k)C(k)(1+(-1)^(n-k))/2}.
Conjecture: -(n-1)*(n+1)*a(n) +2*(5*n^2-9*n+1)*a(n-1) +2*(-15*n^2+58*n-49)*a(n-2) +2*(10*n^2-76*n+123)*a(n-3) +(31*n-55)*(n-3)*a(n-4) -30*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 08 2016
Conjecture: +(3*n-10)*(n-1)*(n+1)*a(n) +2*(-12*n^3+58*n^2-67*n+10)*a(n-1) +2*(21*n^3-136*n^2+289*n-196)*a(n-2) +2*(n-2)*(12*n^2-46*n+27)*a(n-3) -15*(n-2)*(n-3)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jun 08 2016
a(n) ~ 5^(n + 3/2) / (16 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 30 2017
CROSSREFS
Sequence in context: A319787 A148844 A145760 * A102206 A192856 A110886
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 04 2005
STATUS
approved