The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102206 a(0) = 3, a(1) = 8, a(n+2) = 4*a(n+1) - a(n) - 2. 4
 3, 8, 27, 98, 363, 1352, 5043, 18818, 70227, 262088, 978123, 3650402, 13623483, 50843528, 189750627, 708158978, 2642885283, 9863382152, 36810643323, 137379191138, 512706121227, 1913445293768, 7141075053843, 26650854921602, 99462344632563, 371198523608648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-5,1). FORMULA G.f.: (2x-1)(x-3)/((1-x)(x^2-4x+1)). a(n) = A092184(n+1) + 2; a(n+1) - a(n) = A001834(n+1) (see comment). a(0)=3, a(1)=8, a(2)=27, a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). - Harvey P. Dale, Jul 25 2012 a(n) = (2+(2-sqrt(3))^(1+n)+(2+sqrt(3))^(1+n))/2. - Colin Barker, Nov 03 2016 MATHEMATICA a = 3; a = 8; a[n_] := a[n] = 4a[n - 1] - a[n - 2] - 2; Table[a[n], {n, 0, 23}] (* Or *) CoefficientList[ Series[(2x - 1)(x - 3)/((1 - x)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *) LinearRecurrence[{5, -5, 1}, {3, 8, 27}, 30] (* Harvey P. Dale, Jul 25 2012 *) PROG (PARI) Vec((2*x-1)*(x-3)/((1-x)*(x^2-4*x+1)) + O(x^30)) \\ Colin Barker, Nov 03 2016 CROSSREFS Cf. A092184, A001834, A001353, A102207. Sequence in context: A148844 A145760 A102318 * A192856 A110886 A104854 Adjacent sequences:  A102203 A102204 A102205 * A102207 A102208 A102209 KEYWORD nonn,easy AUTHOR Creighton Dement, Dec 30 2004 EXTENSIONS More terms from Robert G. Wilson v, Jan 12 2005 Recurrence in the definition corrected by R. J. Mathar, Aug 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 15:41 EDT 2020. Contains 334748 sequences. (Running on oeis4.)