login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102206
a(0) = 3, a(1) = 8, a(n+2) = 4*a(n+1) - a(n) - 2.
4
3, 8, 27, 98, 363, 1352, 5043, 18818, 70227, 262088, 978123, 3650402, 13623483, 50843528, 189750627, 708158978, 2642885283, 9863382152, 36810643323, 137379191138, 512706121227, 1913445293768, 7141075053843, 26650854921602, 99462344632563, 371198523608648
OFFSET
0,1
FORMULA
G.f.: (2x-1)(x-3)/((1-x)(x^2-4x+1)).
a(n) = A092184(n+1) + 2; a(n+1) - a(n) = A001834(n+1) (see comment).
a(0)=3, a(1)=8, a(2)=27, a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). - Harvey P. Dale, Jul 25 2012
a(n) = (2+(2-sqrt(3))^(1+n)+(2+sqrt(3))^(1+n))/2. - Colin Barker, Nov 03 2016
MATHEMATICA
a[0] = 3; a[1] = 8; a[n_] := a[n] = 4a[n - 1] - a[n - 2] - 2; Table[a[n], {n, 0, 23}] (* Or *)
CoefficientList[ Series[(2x - 1)(x - 3)/((1 - x)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
LinearRecurrence[{5, -5, 1}, {3, 8, 27}, 30] (* Harvey P. Dale, Jul 25 2012 *)
PROG
(PARI) Vec((2*x-1)*(x-3)/((1-x)*(x^2-4*x+1)) + O(x^30)) \\ Colin Barker, Nov 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Dec 30 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jan 12 2005
Recurrence in the definition corrected by R. J. Mathar, Aug 07 2008
STATUS
approved