login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A mean binomial transform of the Catalan numbers.
0

%I #8 Oct 30 2017 08:55:29

%S 1,1,3,8,27,97,373,1493,6163,26027,111897,488006,2153429,9596199,

%T 43121211,195165576,888861555,4070582971,18732710281,86584519280,

%U 401776434017,1870983991035,8740907398527,40956401225597

%N A mean binomial transform of the Catalan numbers.

%C Average of binomial and inverse binomial transforms of the Catalan numbers A000108.

%F G.f.: (2-sqrt((1-3x)/(1+x))-sqrt((1-5x)/(1-x)))/(4x);

%F a(n)=sum{k=0..floor(n/2), binomial(n, 2k)C(n-2k)};

%F a(n)=sum{k=0..n, binomial(n, k)C(k)(1+(-1)^(n-k))/2}.

%F Conjecture: -(n-1)*(n+1)*a(n) +2*(5*n^2-9*n+1)*a(n-1) +2*(-15*n^2+58*n-49)*a(n-2) +2*(10*n^2-76*n+123)*a(n-3) +(31*n-55)*(n-3)*a(n-4) -30*(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jun 08 2016

%F Conjecture: +(3*n-10)*(n-1)*(n+1)*a(n) +2*(-12*n^3+58*n^2-67*n+10)*a(n-1) +2*(21*n^3-136*n^2+289*n-196)*a(n-2) +2*(n-2)*(12*n^2-46*n+27)*a(n-3) -15*(n-2)*(n-3)*(3*n-7)*a(n-4)=0. - _R. J. Mathar_, Jun 08 2016

%F a(n) ~ 5^(n + 3/2) / (16 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Oct 30 2017

%Y Cf. A007317, A086619.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Jan 04 2005