login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102315
Expansion of (b(q^6) * c(q^6)) / (b(q^3) * c(q^3)) in powers of q where b(), c() are cubic AGM theta functions.
2
1, 2, 3, 8, 13, 20, 37, 56, 83, 134, 196, 280, 419, 592, 824, 1176, 1618, 2202, 3040, 4096, 5471, 7368, 9753, 12824, 16937, 22090, 28653, 37248, 47968, 61488, 78887, 100472, 127461, 161702, 203951, 256368, 322090, 402748, 502112, 625464, 776061
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Given g.f. A(x), then B(q) = q*A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 4*u*v^2.
Also, B(q) satisfies 0 = f(B(q), B(-q)) where f(u, v) = u + v - 4*u^2*v^2 which is involved in equation (13.22) where gg' = (2B(q))^12 and GG' = (2B(-q))^12. Refer to A058092 for more details. - Michael Somos, Sep 27 2019
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag. See p. 179, equation (13.22).
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 392.
LINKS
FORMULA
Expansion of (chi(-x) * chi(-x^3))^(-2) in powers of x where chi() is a Ramanujan theta function.
Euler transform of period 6 sequence [2, 0, 4, 0, 2, 0, ...].
Expansion of q^(-1) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^2 in powers of q^3.
Convolution inverse of A058543. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(11/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 08 2015
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 37*x^6 + 56*x^7 + ...
G.f. = q + 2*q^4 + 3*q^7 + 8*q^10 + 13*q^13 + 20*q^16 + 37*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2] QPochhammer[ x^3, x^6])^-2, {x, 0, n}]; (* Michael Somos, Feb 19 2015 *)
nmax = 60; CoefficientList[Series[Product[(1+x^k)^2 * (1+x^(3*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^2, n))};
(PARI) q='q+O('q^99); Vec((eta(q^2)*eta(q^6)/(eta(q)*eta(q^3)))^2) \\ Altug Alkan, Apr 21 2018
CROSSREFS
Sequence in context: A236169 A080478 A002053 * A376534 A142880 A147329
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 04 2005
STATUS
approved