login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102312
a(n) = Fibonacci(5*n).
18
0, 5, 55, 610, 6765, 75025, 832040, 9227465, 102334155, 1134903170, 12586269025, 139583862445, 1548008755920, 17167680177565, 190392490709135, 2111485077978050, 23416728348467685, 259695496911122585, 2880067194370816120, 31940434634990099905
OFFSET
0,2
LINKS
Michael D.Hirschhorn, A Naive Proof that F5n = 0 (mod 5), Fib. Q. 51(3), 2013, 256-258.
Tanya Khovanova, Recursive Sequences
FORMULA
G.f.: 5*x/(1-11*x-x^2).
a(n) = A000045(5*n) = 5*A049666(n).
a(n) = Fibonacci(2*n)*Lucas(3*n)+Fibonacci(n). Lucas =A000032(n), Fibonacci=A000045(n). - Gary Detlefs, Dec 22 2012
a(n) = (-((11 - 5*sqrt(5))/2)^n + ((11+5*sqrt(5))/2)^n)/sqrt(5). - Colin Barker, Nov 10 2016
a(n) = 11*a(n-1)+a(n-2). - Mike Speciner, Aug 20 2024
MAPLE
seq(combinat:-fibonacci(5*n), n=0..100); # Robert Israel, Dec 12 2014
MATHEMATICA
Table[ Fibonacci[5n], {n, 0, 17}] (* Robert G. Wilson v, Jan 09 2005 *)
PROG
(Sage) [fibonacci(5*n) for n in range(0, 18)] # Zerinvary Lajos, May 15 2009
(Magma) [Fibonacci(5*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
(PARI) vector(18, n, fibonacci(5*n)) \\ Edward Jiang, Dec 11 2014
(PARI) concat(0, Vec(5*x/(1-11*x-x^2) + O(x^30))) \\ Colin Barker, Nov 10 2016
CROSSREFS
Essentially the fifth column of array A102310.
Cf. A049666. [Zerinvary Lajos, May 15 2009]
Cf. A138134 (partial sums).
Sequence in context: A002279 A119292 A139258 * A372942 A114909 A038261
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jan 06 2005
STATUS
approved