login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102310 Square array read by antidiagonals: Fibonacci(k*n). 6
1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.

LINKS

Freddy Barrera, Antidiagonals n = 1..50, flattened

FORMULA

For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).

A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019

EXAMPLE

1,  1,   2,    3,     5, ...

1,  3,   8,   21,    55, ...

2,  8,  34,  144,   610, ...

3, 21, 144,  987,  6765, ...

5, 55, 610, 6765, 75025, ...

MATHEMATICA

Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 10 2017 *)

PROG

(Sage)

F = fibonacci # A000045

def A(n, k):

    return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k)

[A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019

(MAGMA) /* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019

CROSSREFS

Equals A000045(A003991(k, n)).

Columns include A000045, A001906, A014445, A033888, A102312.

Main diagonal is in A054783. Antidiagonal sums are in A102311.

Sequence in context: A076731 A085216 A300663 * A151546 A117936 A264766

Adjacent sequences:  A102307 A102308 A102309 * A102311 A102312 A102313

KEYWORD

nonn,tabl

AUTHOR

Ralf Stephan, Jan 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:25 EST 2019. Contains 329078 sequences. (Running on oeis4.)