login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A102310
Square array read by antidiagonals: Fibonacci(k*n).
6
1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55
OFFSET
1,4
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.
LINKS
FORMULA
For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).
A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019
EXAMPLE
1, 1, 2, 3, 5, ...
1, 3, 8, 21, 55, ...
2, 8, 34, 144, 610, ...
3, 21, 144, 987, 6765, ...
5, 55, 610, 6765, 75025, ...
MATHEMATICA
Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 10 2017 *)
PROG
(Sage)
F = fibonacci # A000045
def A(n, k):
return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k)
[A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019
(Magma) /* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019
CROSSREFS
Equals A000045(A003991(k, n)).
Columns include A000045, A001906, A014445, A033888, A102312.
Main diagonal is in A054783. Antidiagonal sums are in A102311.
Sequence in context: A341653 A085216 A300663 * A151546 A117936 A264766
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Jan 06 2005
STATUS
approved