login
A300663
Expansion of 1/(1 - Sum_{k>=1} mu(k)*x^k), where mu() is the Moebius function (A008683).
9
1, 1, 0, -2, -3, -2, 3, 8, 8, -2, -16, -24, -10, 24, 59, 54, -11, -117, -174, -90, 162, 431, 449, -20, -835, -1393, -848, 1062, 3352, 3748, 317, -6257, -11134, -7583, 7294, 25956, 30786, 5217, -46545, -88132, -65062, 48534, 199234, 249263, 63034, -342174, -691679, -554002
OFFSET
0,4
COMMENTS
Invert transform of A008683.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - Sum_{k>=1} A008683(k)*x^k).
a(0) = 1; a(n) = Sum_{k=1..n} mu(k) * a(n-k). - Seiichi Manyama, Apr 06 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
numtheory[mobius](j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Mar 10 2018
MATHEMATICA
nmax = 47; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[MoebiusMu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 47}]
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, moebius(k)*x^k))) \\ Seiichi Manyama, Apr 06 2022
(PARI) a(n) = if(n==0, 1, sum(k=1, n, moebius(k)*a(n-k))); \\ Seiichi Manyama, Apr 06 2022
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 10 2018
STATUS
approved