OFFSET
0,3
COMMENTS
Number of compositions (ordered partitions) into squarefree parts (A005117).
INVERT transform of the absolute value of the Möbius function (A008966). - Alois P. Heinz, Feb 11 2021
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000
Eric Weisstein's World of Mathematics, Squarefree
FORMULA
G.f.: 1/(1 - Sum_{k>=1} mu(k)^2*x^k).
EXAMPLE
a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + 52*x^7 + ... - Michael Somos, Jul 13 2023
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(numtheory[issqrfree](j), a(n-j), 0), j=1..n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 04 2021
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) {a(n) = if(n<0, 0, polcoeff( 1/(1 - sum(k=1, n, x^k*abs(moebius(k)), x*O(x^n))), n, x))}; /* Michael Somos, Jul 13 2023 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 28 2016
STATUS
approved