OFFSET
5,3
COMMENTS
For n <= 14, due to Markus Rost. For n > 14, see references.
REFERENCES
S. Garibaldi, "Cohomological invariants: exceptional groups and spin groups", Memoirs of the AMS #937 (2009).
A. Merkurjev, Essential dimension, Quadratic forms-algebra, arithmetic, and geometry (R. Baeza, W.K. Chan, D.W. Hoffmann, and R. Schulze-Pillot, eds.), Contemp. Math., vol. 493, 2009, pp. 299-325.
LINKS
P. Brosnan, Z. Reichstein, and A. Vistoli, Essential dimension, spinor groups, and quadratic forms, Annals of Math. vol 171 (2010), 533-544.
V. Chernousov and A.S. Merkurjev, Essential dimension of spinor and Clifford groups, Algebra & Number Theory 8 (2014), no. 2, 457-472.
S. Garibaldi and R.M. Guralnick, Spinors and essential dimension, arXiv:1601.00590 [math.GR], 2016.
Alexander S. Merkurjev, Essential dimension, Bull. Amer. Math. Soc., 54 (Oct. 2017), 635-661.
EXAMPLE
a(14) = 7, meaning that Spin_14 has essential dimension 7, reflecting a cohomological invariant of degree 7 constructed using the G2 X G2 semidirect mu_4 subgroup.
MATHEMATICA
a[n_] := If[n>14, Which[Mod[n, 2] == 1, 2^((n-1)/2)-n(n-1)/2, Mod[n, 4] == 2, 2^((n-2)/2)-n(n-1)/2, Mod[n, 4] == 0, 2^IntegerExponent[n, 2]-n(n-1)/2 + 2^((n-2)/2)], If[n >= 5, {0, 0, 4, 5, 5, 4, 5, 6, 6, 7}[[n-4]]]];
Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 18 2019, from Python *)
PROG
(Python)
def a(n):
if n > 14:
if n%2 == 1:
return 2**((n-1)/2) - n*(n-1)/2
if n%4 == 2:
return 2**((n-2)/2) - n*(n-1)/2
if n%4 == 0:
return 2**((n-2)/2) - n*(n-1)/2 + biggestdivisor(n, 2)
elif n >= 5:
return [0, 0, 4, 5, 5, 4, 5, 6, 6, 7][n-5]
return "Error"
def biggestdivisor(n, d): # return largest power of d dividing n
if n%d != 0:
return 1;
else:
return d*biggestdivisor(n/d, d);
CROSSREFS
KEYWORD
nonn
AUTHOR
Skip Garibaldi, Dec 28 2016
EXTENSIONS
More terms from Jean-François Alcover, Mar 12 2019
STATUS
approved