OFFSET
0,2
COMMENTS
Recurrence relation involves the convolution of the Moebius function (A068341).
Radius of convergence of A(x) is r=0.5802946238073267...
Related limits are limit_{n->infinity} a(n) r^n/n = 0.406...(?) and limit_{n->infinity} a(n+1)/a(n) = 1.723262561763844...
This sequence is the self-convolution of A073776.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: A(x)= x/(Sum_{n=1..infinity} mu(n)*x^n)^2, A(0)=1, where mu(n)=Moebius function.
EXAMPLE
MATHEMATICA
A068341[n_] := A068341[n] = Sum[MoebiusMu[k]*MoebiusMu[n + 1 - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[-A068341[k + 1]*a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 10 2011 *)
PROG
(Haskell)
a073777 n = a073777_list !! (n-1)
a073777_list = 1 : f [1] where
f xs = y : f (y : xs) where y = sum $ zipWith (*) xs ms'
ms' = map negate $ tail a068341_list
-- Reinhard Zumkeller, Nov 03 2015
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Paul D. Hanna, Aug 10 2002
EXTENSIONS
Corrected by Jean-François Alcover, Oct 10 2011
STATUS
approved