login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073777
a(n) = Sum_{k=1..n} -A068341(k+1)*a(n-k), a(0)=1.
3
1, 2, 5, 10, 22, 42, 85, 162, 314, 588, 1113, 2066, 3847, 7080, 13036, 23824, 43504, 79048, 143441, 259376, 468313, 843352, 1516515, 2721470, 4877165, 8726118, 15593224, 27826634, 49602226, 88316198, 157089101, 279137436, 495566701, 879034448, 1557979289
OFFSET
0,2
COMMENTS
Recurrence relation involves the convolution of the Moebius function (A068341).
Radius of convergence of A(x) is r=0.5802946238073267...
Related limits are limit_{n->infinity} a(n) r^n/n = 0.406...(?) and limit_{n->infinity} a(n+1)/a(n) = 1.723262561763844...
This sequence is the self-convolution of A073776.
LINKS
FORMULA
G.f.: A(x)= x/(Sum_{n=1..infinity} mu(n)*x^n)^2, A(0)=1, where mu(n)=Moebius function.
EXAMPLE
a(4) = -A068341(2)*a(3) -A068341(3)*a(2) -A068341(4)*a(1) -A068341(5)*a(0) = 2*10 +1*5 -2*2 +1*1 = 22. A068341 begins {1,-2,-1,2,-1,4,-2,0,3,...}.
MATHEMATICA
A068341[n_] := A068341[n] = Sum[MoebiusMu[k]*MoebiusMu[n + 1 - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[-A068341[k + 1]*a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 10 2011 *)
PROG
(Haskell)
a073777 n = a073777_list !! (n-1)
a073777_list = 1 : f [1] where
f xs = y : f (y : xs) where y = sum $ zipWith (*) xs ms'
ms' = map negate $ tail a068341_list
-- Reinhard Zumkeller, Nov 03 2015
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Paul D. Hanna, Aug 10 2002
EXTENSIONS
Corrected by Jean-François Alcover, Oct 10 2011
STATUS
approved