login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002512
Expansion of chi(x)^10 / phi(x)^4 in powers of x where phi(), chi() are Ramanujan theta functions.
(Formerly M1380 N0539)
2
1, 2, 5, 10, 22, 40, 75, 130, 230, 382, 636, 1022, 1645, 2570, 4002, 6110, 9297, 13910, 20715, 30462, 44597, 64584, 93085, 132990, 189164, 266992, 375192, 523800, 728285, 1006684, 1386043, 1898586, 2591120, 3519840, 4764736, 6423032
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Morris Newman, Construction and application of a class of modular functions (II). Proc. London Math. Soc. (3) 9 1959 373-387.
Morris Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible]
FORMULA
G.f.: Product_{k>0} ((1 - x^k) * (1 - x^(4*k)))^-2.
Expansion of 1 / (chi(x)^2 * psi(-x)^4) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Apr 24 2014
Expansion of phi(x) / f(-x^2)^5 in powers of x where phi(),f() are Ramanujan theta functions. - Michael Somos, Apr 24 2014
Expansion of q^(5/12) / (eta(q) * eta(q^4))^2 in powers of q.
Euler transform of period 4 sequence [2, 2, 2, 4, ...]. - Michael Somos, Nov 10 2005
a(n) ~ exp(Pi*sqrt(5*n/3)) * 5^(5/4) / (2^(7/2) * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 22*x^4 + 40*x^5 + 75*x^6 + 130*x^7 + ...
G.f. = q^-5 + 2*q^7 + 5*q^19 + 10*q^31 + 22*q^43 + 40*q^55 + 75*q^67 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^4])^-2, {x, 0, n}]; (* Michael Somos, Apr 24 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] / QPochhammer[ x^2]^5, {x, 0, n}]; (* Michael Somos, Apr 24 2014 *)
nmax = 40; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(4*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A))^-2, n))}; /* Michael Somos, Nov 10 2005 */
CROSSREFS
KEYWORD
nonn
STATUS
approved