The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime. (Formerly M2884 N2039) 39
 3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 2*p+1 divides A000225(p), the p-th Mersenne number. - Lekraj Beedassy, Jun 23 2003 Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - Arkadiusz Wesolowski, May 26 2011 Intersection of A005384 (Sophie Germain primes) and A002145. - Jeppe Stig Nielsen, Aug 03 2020 REFERENCES A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564. L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27. Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Marius A. Burtea, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from T. D. Noe) MATHEMATICA Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ] Select[Prime[Range[500]], Mod[#, 4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *) PROG (PARI) is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013 (MAGMA) [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016 (MATLAB) p=primes(1500); m=1; for u=1:length(p)    if and(isprime(2*p(u)+1)==1, mod(p(u), 4)==3) ; sol(m)=p(u); m=m+1;  end; end sol % Marius A. Burtea, Mar 26 2019 CROSSREFS Cf. A002145, A005384. Sequence in context: A032026 A282198 A158034 * A096297 A081857 A168163 Adjacent sequences:  A002512 A002513 A002514 * A002516 A002517 A002518 KEYWORD nonn AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Mar 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 06:35 EDT 2021. Contains 343879 sequences. (Running on oeis4.)