login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.
(Formerly M2884 N2039)
31
3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

2*p+1 divides M(p), i.e. A000225(p), the p-th Mersenne number. - Lekraj Beedassy, Jun 23 2003

Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - Arkadiusz Wesolowski, May 26 2011

REFERENCES

A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27.

Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ]

Select[Prime[Range[500]], Mod[#, 4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *)

PROG

(PARI) is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013

(MAGMA) [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016

CROSSREFS

Sequence in context: A032026 A282198 A158034 * A096297 A081857 A168163

Adjacent sequences:  A002512 A002513 A002514 * A002516 A002517 A002518

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Robert G. Wilson v, Mar 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 14:06 EDT 2017. Contains 290808 sequences.