login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.
(Formerly M2884 N2039)
43

%I M2884 N2039 #56 Jul 25 2024 10:57:38

%S 3,11,23,83,131,179,191,239,251,359,419,431,443,491,659,683,719,743,

%T 911,1019,1031,1103,1223,1439,1451,1499,1511,1559,1583,1811,1931,2003,

%U 2039,2063,2339,2351,2399,2459,2543,2699,2819,2903,2939,2963,3023,3299

%N Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.

%C 2*p+1 divides A000225(p), the p-th Mersenne number. - _Lekraj Beedassy_, Jun 23 2003

%C Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - _Arkadiusz Wesolowski_, May 26 2011

%C Intersection of A005384 (Sophie Germain primes) and A002145. - _Jeppe Stig Nielsen_, Aug 03 2020

%D A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564.

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27.

%D Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Marius A. Burtea, <a href="/A002515/b002515.txt">Table of n, a(n) for n = 1..10000</a> (terms n = 1..1000 from T. D. Noe)

%F a(n) >> n log^2 n. - _Charles R Greathouse IV_, Jul 25 2024

%t Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ]

%t Select[Prime[Range[500]],Mod[#,4]==3&&PrimeQ[2#+1]&] (* _Harvey P. Dale_, Mar 15 2016 *)

%o (PARI) is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ _Charles R Greathouse IV_, Apr 01 2013

%o (PARI) list(lim)=my(v=List()); forprimestep(p=3,lim\1,4, if(isprime(2*p+1), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Jul 25 2024

%o (Magma) [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // _Vincenzo Librandi_, Sep 03 2016

%o (MATLAB) p=primes(1500); m=1;

%o for u=1:length(p)

%o if and(isprime(2*p(u)+1)==1, mod(p(u),4)==3) ; sol(m)=p(u); m=m+1; end;

%o end

%o sol % _Marius A. Burtea_, Mar 26 2019

%Y Intersection of A002145 and A005384.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Robert G. Wilson v_, Mar 07 2002