login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002516
Earliest sequence with a(a(n)) = 2n.
19
0, 3, 6, 2, 12, 7, 4, 10, 24, 11, 14, 18, 8, 15, 20, 26, 48, 19, 22, 34, 28, 23, 36, 42, 16, 27, 30, 50, 40, 31, 52, 58, 96, 35, 38, 66, 44, 39, 68, 74, 56, 43, 46, 82, 72, 47, 84, 90, 32, 51, 54, 98, 60, 55, 100, 106, 80, 59, 62, 114, 104, 63, 116, 122, 192, 67, 70, 130
OFFSET
0,2
FORMULA
a(4n) = 2*(a(2n)), a(4n+1) = 4n+3, a(4n+2) = 2*(a(2n+1)), a(4n+3) = 8n+2. - Henry Bottomley, Apr 27 2000
From Ralf Stephan, Feb 22 2004: (Start)
a(n) = n + 2*A006519(n) if odd part of n is of form 4k+1, or 2n - 4*A006519(n) otherwise.
a(2n) = 2*a(n), a(2n+1) = 2n + 3 + (2n - 5)*[n mod 2].
G.f.: Sum_{k>=0} 2^k*t(6t^6 + t^4 + 2t^2 + 3)/(1 - t^4)^2, t = x^2^k. (End)
MATHEMATICA
a[0] = 0; a[n_ /; Mod[n, 2] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := n+2; a[n_ /; Mod[n, 4] == 3] := 2(n-2); Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Feb 06 2012, after Henry Bottomley *)
PROG
(PARI) v2(n)=valuation(n, 2)
a(n)=2^v2(n)*(-1+3/2*n/2^v2(n)-(-3+1/2*n/2^v2(n))*(-1)^((n/2^v2(n)-1)/2))
(PARI) a(n)=local(t); if(n<1, 0, if(n%2==0, 2*a(n/2), t=(n-1)/2; 3*t+1/2-(t-5/2)*(-1)^t)) \\ Ralf Stephan, Feb 22 2004
(Haskell)
import Data.List (transpose)
a002516 n = a002516_list !! n
a002516_list = 0 : concat (transpose
[a004767_list, f a002516_list, a017089_list, g $ drop 2 a002516_list])
where f [z] = []; f (_:z:zs) = 2 * z : f zs
g [z] = [z]; g (z:_:zs) = 2 * z : g zs
-- Reinhard Zumkeller, Jun 08 2015
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved