OFFSET
0,2
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Ralf Stephan, Some divide-and-conquer sequences ...
Ralf Stephan, Table of generating functions
FORMULA
a(4n) = 2*(a(2n)), a(4n+1) = 4n+3, a(4n+2) = 2*(a(2n+1)), a(4n+3) = 8n+2. - Henry Bottomley, Apr 27 2000
From Ralf Stephan, Feb 22 2004: (Start)
a(2n) = 2*a(n), a(2n+1) = 2n + 3 + (2n - 5)*[n mod 2].
G.f.: Sum_{k>=0} 2^k*t(6t^6 + t^4 + 2t^2 + 3)/(1 - t^4)^2, t = x^2^k. (End)
MATHEMATICA
a[0] = 0; a[n_ /; Mod[n, 2] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := n+2; a[n_ /; Mod[n, 4] == 3] := 2(n-2); Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Feb 06 2012, after Henry Bottomley *)
PROG
(PARI) v2(n)=valuation(n, 2)
a(n)=2^v2(n)*(-1+3/2*n/2^v2(n)-(-3+1/2*n/2^v2(n))*(-1)^((n/2^v2(n)-1)/2))
(PARI) a(n)=local(t); if(n<1, 0, if(n%2==0, 2*a(n/2), t=(n-1)/2; 3*t+1/2-(t-5/2)*(-1)^t)) \\ Ralf Stephan, Feb 22 2004
(Haskell)
import Data.List (transpose)
a002516 n = a002516_list !! n
a002516_list = 0 : concat (transpose
[a004767_list, f a002516_list, a017089_list, g $ drop 2 a002516_list])
where f [z] = []; f (_:z:zs) = 2 * z : f zs
g [z] = [z]; g (z:_:zs) = 2 * z : g zs
-- Reinhard Zumkeller, Jun 08 2015
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved