|
|
A268717
|
|
Permutation of natural numbers: a(0) = 0, a(n) = A003188(1+A006068(n-1)), where A003188 is binary Gray code and A006068 is its inverse.
|
|
19
|
|
|
0, 1, 3, 6, 2, 12, 4, 7, 5, 24, 8, 11, 9, 13, 15, 10, 14, 48, 16, 19, 17, 21, 23, 18, 22, 25, 27, 30, 26, 20, 28, 31, 29, 96, 32, 35, 33, 37, 39, 34, 38, 41, 43, 46, 42, 36, 44, 47, 45, 49, 51, 54, 50, 60, 52, 55, 53, 40, 56, 59, 57, 61, 63, 58, 62, 192, 64, 67, 65, 69, 71, 66, 70, 73, 75, 78, 74, 68, 76, 79, 77, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 0..8191
Index entries for sequences that are permutations of the natural numbers
|
|
FORMULA
|
a(n) = A003188(A066194(n)) = A003188(1+A006068(n-1)).
Other identities. For all n >= 0:
A101080(n,a(n+1)) = 1. [The Hamming distance between n and a(n+1) is always one.]
A268726(n) = A000523(A003987(n, a(n+1))). [A268726 gives the index of the toggled bit.]
|
|
MATHEMATICA
|
A003188[n_] := BitXor[n, Floor[n/2]]; A006068[n_] := If[n == 0, 0, BitXor @@ Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]]; a[n_] := If[n == 0, 0, A003188[1 + A006068[n-1]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 23 2016 *)
|
|
PROG
|
(Scheme) (define (A268717 n) (if (zero? n) n (A003188 (A066194 n))))
(PARI) A003188(n) = bitxor(n, floor(n/2));
A006068(n) = if(n<2, n, {my(m = A006068(floor(n/2))); 2*m + (n%2 + m%2)%2});
for(n=0, 100, print1(if(n<1, 0, A003188(1 + A006068(n - 1)))", ")) \\ Indranil Ghosh, Mar 31 2017
(Python)
def A003188(n): return n^(n//2)
def A006068(n):
if n<2: return n
m = A006068(n//2)
return 2*m + (n%2 + m%2)%2
def a(n): return 0 if n<1 else A003188(1 + A006068(n - 1))
print([a(n) for n in range(0, 101)]) # Indranil Ghosh, Mar 31 2017
|
|
CROSSREFS
|
Inverse: A268718.
Cf. A000523, A003188, A003987, A006068, A066194, A101080, A268726, A268727.
Row 1 and column 1 of array A268715 (without the initial zero).
Row 1 of array A268820.
Cf. A092246 (fixed points).
Cf. A268817 ("square" of this permutation).
Cf. A268821 ("shifted square"), A268823 ("shifted cube") and also A268825, A268827 and A268831 ("shifted higher powers").
Sequence in context: A257506 A210035 A210199 * A002516 A073807 A090774
Adjacent sequences: A268714 A268715 A268716 * A268718 A268719 A268720
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Antti Karttunen, Feb 12 2016
|
|
STATUS
|
approved
|
|
|
|