login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168163
Sophie Germain primes p such that the concatenation of p and 2p+1 is again prime.
2
3, 11, 23, 113, 173, 281, 359, 431, 491, 509, 719, 1103, 1229, 1559, 1889, 1931, 2039, 2393, 2459, 3413, 3539, 3761, 3911, 4391, 4793, 5303, 6113, 6263, 6329, 6491, 6563, 7643, 7823, 7883, 8069, 8093, 8951, 9221, 9473, 10061, 10091, 10589, 10781, 11369
OFFSET
1,1
COMMENTS
A subsequence of A005384 (Sophie Germain primes: 2p+1 is prime) and of A168164 (which does not require 2p+1 to be prime).
The primes concat(p,2p+1) are listed in A168165.
LINKS
MATHEMATICA
sgp2Q[p_]:=Module[{s=2p+1}, AllTrue[{s, p 10^IntegerLength[s]+s}, PrimeQ]]; Select[ Prime[ Range[ 1500]], sgp2Q] (* Harvey P. Dale, Jul 11 2023 *)
PROG
(PARI) forprime(p=1, 19999, isprime(2*p+1) & isprime(eval(Str(p, 2*p+1))) & print1(p", "))
CROSSREFS
Sequence in context: A002515 A096297 A081857 * A120088 A081737 A005475
KEYWORD
base,nonn
AUTHOR
M. F. Hasler, Nov 25 2009
STATUS
approved