|
|
A215422
|
|
Length of binary representation of Fibonacci(2^n).
|
|
0
|
|
|
1, 1, 2, 5, 10, 22, 44, 88, 177, 355, 710, 1421, 2843, 5687, 11374, 22748, 45497, 90995, 181991, 363982, 727965, 1455930, 2911861, 5823723, 11647446, 23294892, 46589786, 93179572, 186359144, 372718289
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n+1)/a(n)->2 as n->infinity.
|
|
LINKS
|
Table of n, a(n) for n=0..29.
|
|
FORMULA
|
a(n) = A070939(A000045(A000079(n))).
a(n) = 2^n * log_2 phi + O(1). - Charles R Greathouse IV, Jun 05 2013
|
|
MATHEMATICA
|
IntegerLength[Fibonacci[2^Range[0, 30]], 2] (* Harvey P. Dale, Apr 10 2019 *)
|
|
PROG
|
(Python)
TOP = 33
fib2m1 = [0]*TOP # Fibonacci(2^n-1)
fib2 = [1]*TOP # Fibonacci(2^n)
print(1, end=', ')
for n in range(1, TOP):
fib2[n] = (2*fib2m1[n-1] + fib2[n-1])*fib2[n-1]
fib2m1[n] = fib2m1[n-1]*fib2m1[n-1] + fib2[n-1]*fib2[n-1]
print(len(bin(fib2[n]))-2, end=', ')
(PARI) a(n) = #binary(fibonacci(2^n)) \\ Michel Marcus, Jun 05 2013
|
|
CROSSREFS
|
Cf. A020909, A215367.
Sequence in context: A002512 A097096 A073777 * A026633 A093370 A094537
Adjacent sequences: A215419 A215420 A215421 * A215423 A215424 A215425
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Alex Ratushnyak, Aug 10 2012
|
|
STATUS
|
approved
|
|
|
|