|
|
A215420
|
|
Primes that remain prime when a single digit 7 is inserted between any two consecutive digits or as the leading or trailing digit.
|
|
12
|
|
|
3, 19, 97, 433, 487, 541, 691, 757, 853, 1471, 2617, 2953, 4507, 6481, 7351, 7417, 8317, 13177, 31957, 42457, 46477, 47977, 50077, 59053, 71917, 73897, 74377, 77479, 77743, 77761, 79039, 99103, 175687, 220897, 271177, 360973
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..63 (* All terms up to and including the 1 millionth prime *)
|
|
EXAMPLE
|
59053 is prime and also 590537, 590573,590753, 597053, 579053, 759053.
|
|
MAPLE
|
A215420:=proc(q, x)
local a, b, c, d, i, n, ok;
for n from 1 to q do
a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od;
a:=ithprime(n); ok:=1;
for i from 0 to b do
c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi;
od;
if ok=1 then print(ithprime(n)); fi;
od; end:
A215420(1000, 7);
|
|
MATHEMATICA
|
Select[Prime[Range[31000]], AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #], 7, n], {n, IntegerLength[#]+1}], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 29 2020 *)
|
|
CROSSREFS
|
Cf. A215417-A215419, A215421
Sequence in context: A049153 A074361 A126187 * A303542 A294251 A294392
Adjacent sequences: A215417 A215418 A215419 * A215421 A215422 A215423
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Paolo P. Lava, Aug 10 2012
|
|
STATUS
|
approved
|
|
|
|