The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294392 E.g.f.: exp(Sum_{n>=1} A001227(n) * x^n). 4
 1, 1, 3, 19, 97, 801, 7411, 73123, 821409, 10977697, 151612291, 2286137811, 38308830913, 669163118209, 12649211055027, 257559356068771, 5432325991339201, 121949878889492673, 2907330680764076419, 71860237654425159187, 1871308081194213959841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..441 FORMULA a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A001227(k)*a(n-k)/(n-k)! for n > 0. E.g.f.: Product_{k>=1} exp(x^(2*k-1)/(1 - x^(2*k-1))). - Ilya Gutkovskiy, Nov 27 2017 Conjecture: log(a(n)/n!) ~ sqrt(n*log(n)). - Vaclav Kotesovec, Sep 07 2018 MATHEMATICA a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSum[k, Mod[#, 2] &]*a[n - k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *) PROG (PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, d%2)*x^k)))) CROSSREFS E.g.f.: exp(Sum_{n>=1} (Sum_{d|n and d is odd} d^k) * x^n): this sequence (k=0), A294394 (k=1), A294395 (k=2). Cf. A001227, A206303. Sequence in context: A215420 A303542 A294251 * A198763 A047029 A095120 Adjacent sequences:  A294389 A294390 A294391 * A294393 A294394 A294395 KEYWORD nonn AUTHOR Seiichi Manyama, Oct 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 20:33 EST 2022. Contains 350662 sequences. (Running on oeis4.)