login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079342
Integers k that divide LS(k), where LS is the "Look and Say" function (A045918).
7
1, 2, 5, 10, 22, 32, 62, 91, 183, 188, 190, 196, 258, 276, 330, 671, 710, 1130, 1210, 1570, 2644, 2998, 3292, 4214, 17055, 20035, 53015, 70315, 101010, 108947, 199245, 233606, 309665, 323232, 356421, 483405, 626262, 919191, 1743599
OFFSET
1,2
COMMENTS
Infinite since s^i is a term for all odd i and s = 10, 32, 62, 91, 183, 190, 196, 258, 276, 671, 710, 1210, 1570, ..., where ^ denotes repeated concatenation of digits. - Michael S. Branicky, Aug 28 2024
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..82 (all terms <= 10^10)
EXAMPLE
E.g. LS(1)=11, LS(2)=12, LS(10)=1110, LS(188)=1128 etc. and in each case LS(n) is a multiple of n.
122918=0 mod 2998, so 2998 is in the sequence.
But 13 == 1 mod 3, so 3 is not in the sequence.
MAPLE
# Implementation by R. J. Mathar, May 08 2019:
A045918 := proc(n)
local a, f, pd, dgs, i ;
a := [] ;
f := 0 ;
pd := -1 ;
dgs := convert(n, base, 10) ;
for i from 1 to nops(dgs) do
if op(-i, dgs) <> pd then
if pd >= 0 then
a := [op(a), f, pd] ;
end if;
pd := op(-i, dgs) ;
f := 1 ;
else
f:= f+1 ;
end if;
end do:
a := [op(a), f, pd] ;
digcatL(%) ;
end proc:
isA079342 := proc(n)
simplify( modp(A045918(n) , n) = 0 ) ;
end proc:
for n from 1 to 30000 do
if isA079342(n) then
print(n) ;
end if;
end do:
PROG
(Python)
def LS(n): return int(''.join(str(len(list(g)))+k for k, g in groupby(str(n))))
def ok(n): return LS(n)%n == 0
print([k for k in range(1, 10**4) if ok(k)]) # Michael S. Branicky, Aug 28 2024
CROSSREFS
Cf. A152957. - David Wasserman, Dec 15 2008
Sequence in context: A278441 A323939 A110744 * A034456 A272080 A002512
KEYWORD
base,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 13 2003
STATUS
approved