login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers k that divide LS(k), where LS is the "Look and Say" function (A045918).
7

%I #24 Aug 29 2024 01:19:11

%S 1,2,5,10,22,32,62,91,183,188,190,196,258,276,330,671,710,1130,1210,

%T 1570,2644,2998,3292,4214,17055,20035,53015,70315,101010,108947,

%U 199245,233606,309665,323232,356421,483405,626262,919191,1743599

%N Integers k that divide LS(k), where LS is the "Look and Say" function (A045918).

%C Infinite since s^i is a term for all odd i and s = 10, 32, 62, 91, 183, 190, 196, 258, 276, 671, 710, 1210, 1570, ..., where ^ denotes repeated concatenation of digits. - _Michael S. Branicky_, Aug 28 2024

%H Michael S. Branicky, <a href="/A079342/b079342.txt">Table of n, a(n) for n = 1..82</a> (all terms <= 10^10)

%e E.g. LS(1)=11, LS(2)=12, LS(10)=1110, LS(188)=1128 etc. and in each case LS(n) is a multiple of n.

%e 122918=0 mod 2998, so 2998 is in the sequence.

%e But 13 == 1 mod 3, so 3 is not in the sequence.

%p # Implementation by _R. J. Mathar_, May 08 2019:

%p A045918 := proc(n)

%p local a,f,pd,dgs,i ;

%p a := [] ;

%p f := 0 ;

%p pd := -1 ;

%p dgs := convert(n,base,10) ;

%p for i from 1 to nops(dgs) do

%p if op(-i,dgs) <> pd then

%p if pd >= 0 then

%p a := [op(a),f,pd] ;

%p end if;

%p pd := op(-i,dgs) ;

%p f := 1 ;

%p else

%p f:= f+1 ;

%p end if;

%p end do:

%p a := [op(a),f,pd] ;

%p digcatL(%) ;

%p end proc:

%p isA079342 := proc(n)

%p simplify( modp(A045918(n) ,n) = 0 ) ;

%p end proc:

%p for n from 1 to 30000 do

%p if isA079342(n) then

%p print(n) ;

%p end if;

%p end do:

%o (Python)

%o def LS(n): return int(''.join(str(len(list(g)))+k for k, g in groupby(str(n))))

%o def ok(n): return LS(n)%n == 0

%o print([k for k in range(1, 10**4) if ok(k)]) # _Michael S. Branicky_, Aug 28 2024

%Y Cf. A056815, A005150, A079562.

%Y Cf. A152957. - _David Wasserman_, Dec 15 2008

%K base,nonn

%O 1,2

%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 13 2003