|
|
A073778
|
|
a(n) = Sum_{k=0..n} T(k)*T(n-k), where T is A000073; convolution of A000073 with itself.
|
|
9
|
|
|
0, 0, 0, 0, 1, 2, 5, 12, 26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, 15776, 30956, 60504, 117845, 228818, 443057, 855732, 1649022, 3171128, 6086626, 11662252, 22309543, 42614178, 81286743, 154856528, 294660040, 560052736, 1063367384, 2017030256
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Number of binary sequences of length n+1 that have exactly one subsequence 000. Example: a(4)=5 because we have 00010,00011,01000,10001 and 11000. Column 1 of A118390. - Emeric Deutsch, Apr 27 2006
Let (b(n)) be the p-INVERT of (1,1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+3) for n >= 0. See A292324. - Clark Kimberling, Sep 15 2017
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^4/(1 - x - x^2 - x^3)^2.
a(n) = Sum_{k=0..n-4} (k+1)*Sum_{j=0..k} binomial(j,n-3*k+2*j-4)*binomial(k,j). - Vladimir Kruchinin, Dec 14 2011
(n-2)*a(n) - (n-1)*a(n-1) - n*a(n-2) - (n+1)*a(n-3) = 0, n > 2. - Michael D. Weiner, Nov 18 2014
|
|
MAPLE
|
|
|
MATHEMATICA
|
CoefficientList[Series[x^4/(1-x-x^2-x^3)^2, {x, 0, 40}], x]
|
|
PROG
|
(Sage) [( x^4/(1-x-x^2-x^3)^2 ).series(x, n+1).list()[n] for n in (0..40)] # Zerinvary Lajos, Jun 02 2009; modified by G. C. Greubel, Dec 15 2021
(Maxima)
a(n):= sum((k+1)*sum(binomial(j, n-3*k+2*j-4)*binomial(k, j), j, 0, k), k, 0, n-4);
(PARI) T(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn,changed
|
|
AUTHOR
|
Mario Catalani (mario.catalani(AT)unito.it), Aug 10 2002
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|