login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292324
p-INVERT of (1,0,0,1,0,0,0,0,0,...), where p(S) = (1 - S)^2.
8
2, 3, 4, 7, 12, 19, 28, 42, 64, 97, 144, 212, 312, 459, 672, 979, 1422, 2062, 2984, 4308, 6206, 8925, 12816, 18376, 26310, 37620, 53728, 76648, 109230, 155507, 221184, 314325, 446320, 633249, 897804, 1271993, 1800942, 2548242, 3603468, 5092747, 7193604
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
LINKS
FORMULA
G.f.: -(((-1 + x) (1 + x) (1 - x + x^2) (2 + x + x^2 + x^3))/(-1 + x + x^4)^2).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) - 2*a(n-5) - a(n-8) for n >= 9.
a(n) = a(n-1)+a(n-4)+A003269(n+2). - R. J. Mathar, Mar 19 2024
MATHEMATICA
z = 60; s = x + x^4; p = (1 - s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292324 *)
CROSSREFS
Sequence in context: A376987 A217786 A228494 * A289919 A293411 A227047
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 15 2017
STATUS
approved