login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228494
The number of 3-length segments in all possible covers of L-length line by these segments with allowed gaps < 3.
0
0, 0, 0, 1, 2, 3, 4, 7, 12, 17, 24, 36, 54, 77, 108, 155, 222, 312, 436, 612, 858, 1194, 1656, 2298, 3184, 4397, 6060, 8346, 11480, 15762, 21612, 29607, 40518, 55385, 75632, 103197, 140692, 191647, 260856, 354814, 482290, 655131, 889364, 1206649, 1636218
OFFSET
0,5
COMMENTS
Related with the number of all possible covers of L-length line segment by 3-length line segments with allowed gaps < 3 (A228362).
FORMULA
G.f.: x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2.
MATHEMATICA
c[k_, l_, m_] := Sum[(-1)^i Binomial[k - 1 - i*l, m - 1] Binomial[m, i], {i, 0, Floor[(k - m)/l]}]; a[L_, l_, m_] := Sum[Binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}]; sa[L_, l_] := Sum[j*a[L, l, j], {j, 1, Ceiling[L/l]}]; Table[sa[j, 3], {j, 0, 100}]
CoefficientList[Series[x^3(x^2+x+1)^2/(x^5+x^4+x^3-1)^2, {x, 0, 100}], x]
PROG
(PARI) concat([0, 0, 0], Vec(x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2+O(x^66))) \\ Joerg Arndt, Aug 23 2013
CROSSREFS
Sequence in context: A325244 A376987 A217786 * A292324 A289919 A293411
KEYWORD
nonn,easy
AUTHOR
Philipp O. Tsvetkov, Aug 23 2013
STATUS
approved