login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118390
Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 000 (n, k >= 0).
5
1, 2, 4, 7, 1, 13, 2, 1, 24, 5, 2, 1, 44, 12, 5, 2, 1, 81, 26, 13, 5, 2, 1, 149, 56, 29, 14, 5, 2, 1, 274, 118, 65, 32, 15, 5, 2, 1, 504, 244, 143, 74, 35, 16, 5, 2, 1, 927, 499, 307, 169, 83, 38, 17, 5, 2, 1, 1705, 1010, 652, 374, 196, 92, 41, 18, 5, 2, 1, 3136, 2027, 1369, 819
OFFSET
0,2
COMMENTS
Row n has n-1 terms (n >= 2). Sum of entries in row n is 2^n (A000079). T(n,0) = A000073(n+3) (the tribonacci numbers). T(n,1) = A073778(n-1). Sum_{k=0..n-1} k*T(n,k) = (n-2)*2^(n-3) (A001787).
LINKS
FORMULA
G.f.: G(t,z) = (1 + (1-t)z + (1-t)z^2)/(1 - (1+t)z - (1-t)z^2 - (1-t)z^3). Recurrence relation: T(n,k) = T(n-1,k) + T(n-2,k) + T(n-3,k) + T(n-1,k-1) - T(n-2,k-1) - T(n-3,k-1) for n >= 3.
EXAMPLE
T(6,2) = 5 because we have 000010, 000011, 010000, 100001 and 110000.
Triangle starts:
1;
2;
4;
7, 1;
13, 2, 1;
24, 5, 2, 1;
44, 12, 5, 2, 1;
81, 26, 13, 5, 2, 1;
MAPLE
G:=(1+(1-t)*z+(1-t)*z^2)/(1-(1+t)*z-(1-t)*z^2-(1-t)*z^3): Gser:=simplify(series(G, z=0, 32)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser, z^n) od: P[0]; P[1]; for n from 2 to 13 do seq(coeff(P[n], t, k), k=0..n-2) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, 1,
expand(b(n-1, min(2, t+1))*`if`(t>1, x, 1))+b(n-1, 0))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..14); # Alois P. Heinz, Sep 17 2019
MATHEMATICA
nn=15; a=x^2/(1-y x)+x; b=1/(1-x); f[list_]:=Select[list, #>0&]; Map[f, CoefficientList[Series[b (1+a)/(1-a x/(1-x)) , {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Nov 18 2012 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 27 2006
STATUS
approved