Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 17 2019 10:25:09
%S 1,2,4,7,1,13,2,1,24,5,2,1,44,12,5,2,1,81,26,13,5,2,1,149,56,29,14,5,
%T 2,1,274,118,65,32,15,5,2,1,504,244,143,74,35,16,5,2,1,927,499,307,
%U 169,83,38,17,5,2,1,1705,1010,652,374,196,92,41,18,5,2,1,3136,2027,1369,819
%N Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 000 (n, k >= 0).
%C Row n has n-1 terms (n >= 2). Sum of entries in row n is 2^n (A000079). T(n,0) = A000073(n+3) (the tribonacci numbers). T(n,1) = A073778(n-1). Sum_{k=0..n-1} k*T(n,k) = (n-2)*2^(n-3) (A001787).
%H Alois P. Heinz, <a href="/A118390/b118390.txt">Rows n = 0..142, flattened</a>
%F G.f.: G(t,z) = (1 + (1-t)z + (1-t)z^2)/(1 - (1+t)z - (1-t)z^2 - (1-t)z^3). Recurrence relation: T(n,k) = T(n-1,k) + T(n-2,k) + T(n-3,k) + T(n-1,k-1) - T(n-2,k-1) - T(n-3,k-1) for n >= 3.
%e T(6,2) = 5 because we have 000010, 000011, 010000, 100001 and 110000.
%e Triangle starts:
%e 1;
%e 2;
%e 4;
%e 7, 1;
%e 13, 2, 1;
%e 24, 5, 2, 1;
%e 44, 12, 5, 2, 1;
%e 81, 26, 13, 5, 2, 1;
%p G:=(1+(1-t)*z+(1-t)*z^2)/(1-(1+t)*z-(1-t)*z^2-(1-t)*z^3): Gser:=simplify(series(G,z=0,32)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: P[0]; P[1]; for n from 2 to 13 do seq(coeff(P[n],t,k),k=0..n-2) od; # yields sequence in triangular form
%p # second Maple program:
%p b:= proc(n, t) option remember; `if`(n=0, 1,
%p expand(b(n-1, min(2, t+1))*`if`(t>1, x, 1))+b(n-1, 0))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
%p seq(T(n), n=0..14); # _Alois P. Heinz_, Sep 17 2019
%t nn=15;a=x^2/(1-y x)+x;b=1/(1-x);f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[b (1+a)/(1-a x/(1-x)) ,{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Nov 18 2012 *)
%Y Cf. A000073, A000079, A001787, A073778, A076791.
%K nonn,tabf
%O 0,2
%A _Emeric Deutsch_, Apr 27 2006