login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070965
a(1) = 1; a(n+1) = sum{k|n} a(k) * mu(k), where the sum is over the positive divisors, k, of n; and mu(k) is the Moebius function.
7
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, -1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, -1, 2, -1, 2, 0, 0, 0, 0, 1, 0, -1, -1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 1, -1, -1, 0, 1, -1, 2, 3, 1, 0, 0, 1, 0, 0, 1, -1, 2, 1, 0, -1, 0, -1, -2, 2, -1, 1, 1, 0, 1, 1, 2, 1, 3, 0, 1, -1, -2, 0, 2, 2, 2, 1, 0, -1, 0, 1, 0, 2, -1, 0
OFFSET
1,30
COMMENTS
Conjecture: all integers are present. - W. Edwin Clark, Aug 20 2004
a(A227953(n)) = n and a(A227954(n)) = -n. - Reinhard Zumkeller, Aug 01 2013
LINKS
EXAMPLE
a(7) = a(1) mu(1) + a(2) mu(2) + a(3) mu(3) + a(6) mu(6) = 1 - 1 - 0 + 1 = 1 because 1, 2, 3 and 6 are the divisors of 6.
MAPLE
a:=proc(n) option remember; add(numtheory[mobius](i)*a(i), i in numtheory[divisors](n-1)) end: a(1):=1: seq(a(n), n=1..100); # Alec Mihailovs, Aug 20 2004
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = Block[{d = Divisors[n - 1]}, Plus @@ (MoebiusMu[d]*a /@ d)]; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Aug 21 2004 *)
PROG
(PARI) a(n)=if(n<3, 1, sumdiv(n-1, k, a(k)*moebius(k))) \\ Charles R Greathouse IV, Feb 07 2013
(Haskell)
a070965 n = a070965_list !! (n-1)
a070965_list = 1 : f 1 where
f x = y : f (x + 1) where
y = sum $ zipWith (*) (map a070965 $ a027750_row x) (a225817_row x)
-- Reinhard Zumkeller, Jul 30 2013
CROSSREFS
Sequence in context: A322392 A089538 A152439 * A079548 A175620 A319812
KEYWORD
sign
AUTHOR
Leroy Quet, May 16 2002
STATUS
approved