OFFSET
1,30
COMMENTS
Conjecture: all integers are present. - W. Edwin Clark, Aug 20 2004
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
EXAMPLE
a(7) = a(1) mu(1) + a(2) mu(2) + a(3) mu(3) + a(6) mu(6) = 1 - 1 - 0 + 1 = 1 because 1, 2, 3 and 6 are the divisors of 6.
MAPLE
a:=proc(n) option remember; add(numtheory[mobius](i)*a(i), i in numtheory[divisors](n-1)) end: a(1):=1: seq(a(n), n=1..100); # Alec Mihailovs, Aug 20 2004
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = Block[{d = Divisors[n - 1]}, Plus @@ (MoebiusMu[d]*a /@ d)]; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Aug 21 2004 *)
PROG
(PARI) a(n)=if(n<3, 1, sumdiv(n-1, k, a(k)*moebius(k))) \\ Charles R Greathouse IV, Feb 07 2013
(Haskell)
a070965 n = a070965_list !! (n-1)
a070965_list = 1 : f 1 where
f x = y : f (x + 1) where
y = sum $ zipWith (*) (map a070965 $ a027750_row x) (a225817_row x)
-- Reinhard Zumkeller, Jul 30 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Leroy Quet, May 16 2002
STATUS
approved