login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225817
Moebius function applied to divisors of n, table read by rows.
9
1, 1, -1, 1, -1, 1, -1, 0, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 1, -1, 0, 1, -1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 0, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 1, -1, 1, -1, -1, 1, 0, 0, 1, -1, 1, -1, 0, -1, 1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1
OFFSET
1
COMMENTS
T(n,k) = A008683(A027750(n,k)), k = 1..A000005(n);
T(n,1) = 1; for n > 1: T(n,2) = -1;
T(n,A000005(n)) = A008683(n);
A048105(n) = number of zeros in row n;
A034444(n) = number of nonzero terms in row n;
A007875(n) = number of ones in row n.
LINKS
EXAMPLE
. n | Initial rows | A027750(n,[1..A000005(n)])
. -----+-----------------------------------+-- divisors of n: -----------
. 1 | 1 | 1
. 2 | 1 -1 | 1,2
. 3 | 1 -1 | 1,3
. 4 | 1 -1 0 | 1,2,4
. 5 | 1 -1 | 1,5
. 6 | 1 -1 -1 1 | 1,2,3,6
. 7 | 1 -1 | 1,7
. 8 | 1 -1 0 0 | 1,2,4,8
. 9 | 1 -1 0 | 1,3,9
. 10 | 1 -1 -1 1 | 1,2,5,10
. 11 | 1 -1 | 1,11
. 12 | 1 -1 -1 0 1 0 | 1,2,3,4,6,12
. 13 | 1 -1 | 1,13
. 14 | 1 -1 -1 1 | 1,2,7,14
. 15 | 1 -1 -1 1 | 1,3,5,15
. 16 | 1 -1 0 0 0 | 1,2,4,8,16
. 17 | 1 -1 | 1,17
. 18 | 1 -1 -1 1 0 0 | 1,2,3,6,9,18
. 19 | 1 -1 | 1,19
. 20 | 1 -1 0 -1 1 0 | 1,2,4,5,10,20
. 21 | 1 -1 -1 1 | 1,3,7,21
. 22 | 1 -1 -1 1 | 1,2,11,22
. 23 | 1 -1 | 1,23
. 24 | 1 -1 -1 0 1 0 0 0 | 1,2,3,4,6,8,12,24
. 25 | 1 -1 0 | 1,5,25
. 26 | 1 -1 -1 1 | 1,2,13,26
. 27 | 1 -1 0 0 | 1,3,9,27
. 28 | 1 -1 0 -1 1 0 | 1,2,4,7,14,28
. 29 | 1 -1 | 1,29
. 30 | 1 -1 -1 -1 1 1 1 -1 | 1,2,3,5,6,10,15,30 .
MATHEMATICA
Table[Map[MoebiusMu, Divisors[n]], {n, 1, 20}] // Grid (* Geoffrey Critzer, Dec 10 2014 *)
PROG
(Haskell)
a225817 n k = a225817_tabf !! (n-1) !! (k-1)
a225817_row n = a225817_tabf !! (n-1)
a225817_tabf = map (map a008683) a027750_tabf
CROSSREFS
Cf. A000005 (row lengths), A063524 (row sums), A069158 (row products).
Sequence in context: A071025 A077010 A330548 * A355823 A355825 A332732
KEYWORD
sign,tabf
AUTHOR
Reinhard Zumkeller, Jul 30 2013
STATUS
approved