login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007875
Number of ways of writing n as p*q, with p <= q, gcd(p, q) = 1.
20
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 4
OFFSET
1,6
COMMENTS
a(n), n >= 2, is the number of divisor products in the numerator as well as denominator of the unique representation of n in terms of divisor products. See the W. Lang link under A007955, where a(n)=l(n) in Table 1. - Wolfdieter Lang, Feb 08 2011
Record values are the binary powers, occurring at primorial positions except at 2: a(A002110(0))=A000079(0), a(A002110(n+1))=A000079(n) for n > 0. - Reinhard Zumkeller, Aug 24 2011
For n > 1: a(n) = (A000005(n) - A048105(n)) / 2; number of ones in row n of triangle in A225817. - Reinhard Zumkeller, Jul 30 2013
LINKS
Larry Bates and Peter Gibson, A geometry where everything is better than nice, arXiv:1603.06622 [math.DG], (21-March-2016); see page 2.
Vaclav Kotesovec, Graph - the asymptotic ratio.
FORMULA
a(n) = (1/2)*Sum_{ d divides n } abs(mu(d)) = 2^(A001221(n)-1) = A034444(n)/2, n > 1. - Vladeta Jovovic, Jan 25 2002
a(n) = phi(2^omega(n)) = A000010(2^A001221(n)). - Enrique Pérez Herrero, Apr 10 2012
Sum_{k=1..n} a(k) ~ 3*n*((log(n) + (2*gamma - 1))/ Pi^2 - 12*(zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. Equivalently, Sum_{k=1..n} a(k) ~ 3*n*(log(n) + 24*log(A) - 1 - 2*log(2*Pi)) / Pi^2, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{d|n} mu(d) * A018892(n/d). - Daniel Suteu, Jan 08 2021
Dirichlet g.f.: (zeta(s)^2/zeta(2*s) + 1)/2. - Amiram Eldar, Sep 09 2023
MAPLE
A007875 := proc(n)
if n = 1 then
1;
else
2^(A001221(n)-1) ;
end if;
end proc: # R. J. Mathar, May 28 2016
MATHEMATICA
a[n_] := With[{r = Reduce[1 <= p <= q <= n && n == p*q && GCD[p, q] == 1, {p, q}, Integers]}, If[Head[r] === And, 1, Length[r]]]; Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Nov 02 2011 *)
a[n_] := EulerPhi[2^PrimeNu[n]]; Array[a, 105] (* Robert G. Wilson v, Apr 10 2012 *)
a[n_] := Sum[If[Mod[n, k] == 0, Re[Sqrt[MoebiusMu[k]]], 0], {k, 1, n}] (* Mats Granvik, Aug 10 2018 *)
PROG
(Haskell)
a007875 = length . filter (> 0) . a225817_row
-- Reinhard Zumkeller, Jul 30 2013, Aug 24 2011
(PARI) a(n)=ceil((1<<omega(n))/2) \\ Charles R Greathouse IV, Nov 02 2011
KEYWORD
nonn,nice,easy
AUTHOR
Victor Ufnarovski
STATUS
approved