login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048105
Number of non-unitary divisors of n.
56
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 2, 5, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 8, 0, 2, 2, 5, 0, 0, 0, 4, 0
OFFSET
1,8
COMMENTS
Number of zeros in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013
LINKS
FORMULA
a(n) = Sigma(0, n) - 2^r(n), where r() = A001221, the number of distinct primes dividing n.
From Reinhard Zumkeller, Jul 30 2013: (Start)
a(n) = A000005(n) - A034444(n).
For n > 1: a(n) = A000005(n) - 2 * A007875(n). (End)
Dirichlet g.f.: zeta(s)^2 - zeta(s)^2/zeta(2*s). - Geoffrey Critzer, Dec 10 2014
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 21 2017
Sum_{k=1..n} a(k) ~ (1-6/Pi^2)*n*log(n) + ((1-6/Pi^2)*(2*gamma-1)+(72*zeta'(2)/Pi^4))*n , where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
EXAMPLE
Example 1: If n is squarefree (A005117) then a(n)=0 since all divisors are unitary.
Example 2: n=12, d(n)=6, ud(n)=4, nud(12)=d(12)-ud(12)=2; from {1,2,3,4,6,12} {1,3,4,12} are unitary while {2,6} are not unitary divisors.
Example 3: n=p^k, a true prime power, d(n)=k+1, u(d)=2^r(x)=2, so nud(n)=d(p^k)-2=k+1 i.e., it can be arbitrarily large.
MAPLE
with(NumberTheory):
seq(SumOfDivisors(n, 0) - 2^NumberOfPrimeFactors(n, 'distinct'), n = 1..105);
# Peter Luschny, Jul 27 2023
MATHEMATICA
Table[DivisorSigma[0, n] - 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Dec 10 2014 *)
PROG
(Haskell)
a048105 n = length [d | d <- [1..n], mod n d == 0, gcd d (n `div` d) > 1]
-- Reinhard Zumkeller, Aug 17 2011
(PARI) a(n)=my(f=factor(n)[, 2]); prod(i=1, #f, f[i]+1)-2^#f \\ Charles R Greathouse IV, Sep 18 2015
(Python)
from math import prod
from sympy import factorint
def A048105(n): return -(1<<len(f:=factorint(n).values()))+prod(e+1 for e in f) # Chai Wah Wu, Aug 12 2024
KEYWORD
nonn
AUTHOR
STATUS
approved