The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259936 Number of ways to express the integer n as a product of its unitary divisors (A034444). 23
 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 5, 1, 2, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Equivalently, a(n) is the number of ways to express the cyclic group Z_n as a direct sum of its Hall subgroups.  A Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. a(n) is the number of ways to partition the set of distinct prime factors of n. Also the number of singleton or pairwise coprime factorizations of n. - Gus Wiseman, Sep 24 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..20000 Wikipedia, Hall subgroup FORMULA a(n) = A000110(A001221(n)). a(n > 1) = A327517(n) + 1. - Gus Wiseman, Sep 24 2019 EXAMPLE a(60) = 5 because we have: 60 = 4*3*5 = 4*15 = 3*20 = 5*12. For n = 36, its unitary divisors are 1, 4, 9, 36. From these we obtain 36 either as 1*36 or 4*9, thus a(36) = 2. - Antti Karttunen, Oct 21 2017 MAPLE map(combinat:-bell @ nops @ numtheory:-factorset, [\$1..100]); # Robert Israel, Jul 09 2015 MATHEMATICA Table[BellB[PrimeNu[n]], {n, 1, 75}] (* second program *) facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], Length[#]==1||CoprimeQ@@#&]], {n, 100}] (* Gus Wiseman, Sep 24 2019 *) PROG (PARI) a(n) = my(t=omega(n), x='x, m=contfracpnqn(matrix(2, t\2, y, z, if( y==1, -z*x^2, 1 - (z+1)*x)))); polcoeff(1/(1 - x + m[2, 1]/m[1, 1]) + O(x^(t+1)), t) \\ Charles R Greathouse IV, Jun 30 2017 CROSSREFS Cf. A000110, A001055, A001221, A034444, A089233, A258466, A281116, A285572. Differs from A050320 for the first time at n=36. Cf. A304716, A302569, A304711, A305079. Related classes of factorizations: - No conditions: A001055 - Strict: A045778 - Constant: A089723 - Distinct multiplicities: A255231 - Singleton or coprime: A259936 - Relatively prime: A281116 - Aperiodic: A303386 - Stable (indivisible): A305149 - Connected: A305193 - Strict relatively prime: A318721 - Uniform: A319269 - Intersecting: A319786 - Constant or distinct factors coprime: A327399 - Constant or relatively prime: A327400 - Coprime: A327517 - Not relatively prime: A327658 - Distinct factors coprime: A327695 Sequence in context: A007875 A323437 A339887 * A050320 A333175 A294893 Adjacent sequences:  A259933 A259934 A259935 * A259937 A259938 A259939 KEYWORD nonn AUTHOR Geoffrey Critzer, Jul 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 08:13 EDT 2021. Contains 344943 sequences. (Running on oeis4.)