OFFSET
1,2
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
FORMULA
For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018
EXAMPLE
The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.
(12): {{1,1,2}}
(6 6): {{1,2},{1,2}}
(8 4): {{1,1,1},{1,1}}
(9 3): {{2,2},{2}}
(10 2): {{1,3},{1}}
(4 4 4): {{1,1},{1,1},{1,1}}
(6 3 3): {{1,2},{2},{2}}
(6 4 2): {{1,2},{1,1},{1}}
(8 2 2): {{1,1,1},{1},{1}}
(3 3 3 3): {{2},{2},{2},{2}}
(4 4 2 2): {{1,1},{1,1},{1},{1}}
(6 2 2 2): {{1,2},{1},{1},{1}}
(4 2 2 2 2): {{1,1},{1},{1},{1},{1}}
(2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}
(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], Length[zsm[Union[#]]]===1&]], {n, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2018
EXTENSIONS
Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018
STATUS
approved