login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356552
a(n) is the least base b > 1 where the sum of digits of n divides n.
6
2, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 7, 3, 2, 17, 2, 19, 2, 2, 11, 23, 2, 3, 5, 3, 3, 29, 3, 31, 2, 3, 2, 3, 2, 37, 19, 3, 2, 41, 2, 43, 6, 3, 23, 47, 2, 7, 4, 5, 4, 53, 3, 2, 3, 3, 29, 59, 2, 61, 31, 3, 2, 3, 2, 67, 2, 2, 6, 71, 2, 73, 37, 3, 4, 3, 3, 79
OFFSET
1,1
COMMENTS
This sequence is well defined: a(1) = 2, and for n > 1, the sum of digits of n in base n equals 1, which divides n.
See A356553 for the corresponding sum of digits.
LINKS
FORMULA
a(n) = 2 iff n belongs to A049445.
a(n) = n iff n is prime.
EXAMPLE
For n = 14:
- we have:
b sum of digits divides 14?
-- ------------- -----------
2 3 no
3 4 no
4 5 no
5 6 no
6 4 no
7 2 yes
- so a(14) = 7.
MATHEMATICA
a[n_] := Module[{b = 2}, While[!Divisible[n, Plus @@ IntegerDigits[n, b]], b++]; b]; Array[a, 100] (* Amiram Eldar, Aug 15 2022 *)
PROG
(PARI) a(n) = { for (b=2, oo, if (n % sumdigits(n, b)==0, return (b))) }
(Python)
from sympy.ntheory import digits
def a(n):
b = 2
while n != 0 and n%sum(digits(n, b)[1:]): b += 1
return b
print([a(n) for n in range(1, 80)]) # Michael S. Branicky, Aug 12 2022
CROSSREFS
Sequence in context: A304716 A237984 A118136 * A258567 A076396 A370834
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Aug 12 2022
STATUS
approved