login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356553
For any n > 0, let b > 1 be the least base where the sum of digits of n divides n; a(n) is the sum of digits of n in base b.
2
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 5, 2, 1, 2, 1, 2, 1, 1, 3, 2, 5, 2, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 2, 1, 5, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 1, 2, 3, 1, 5, 2, 1, 2, 3, 10, 1, 2, 1, 2, 5, 4, 7, 6, 1, 2, 3, 2, 1, 3, 5, 2, 3
OFFSET
1,6
COMMENTS
See A356552 for the corresponding bases.
LINKS
EXAMPLE
For n = 14:
- we have:
b sum of digits divides 14?
-- ------------- -----------
2 3 no
3 4 no
4 5 no
5 6 no
6 4 no
7 2 yes
- so a(14) = 2.
MATHEMATICA
a[n_] := Module[{b = 2}, While[!Divisible[n, (s = Plus @@ IntegerDigits[n, b])], b++]; s]; Array[a, 100] (* Amiram Eldar, Sep 19 2022 *)
PROG
(PARI) a(n) = { for (b=2, oo, my (s=sumdigits(n, b)); if (n % s==0, return (s))) }
(Python)
from sympy.ntheory import digits
def a(n):
b = 2
while n != 0 and n%sum(digits(n, b)[1:]): b += 1
return sum(digits(n, b)[1:])
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Aug 12 2022
CROSSREFS
Cf. A356552.
Sequence in context: A076820 A206824 A293810 * A324369 A276781 A303759
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Aug 12 2022
STATUS
approved