login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303759
Number of times the largest prime power factor of n (A034699) is largest prime power factor for numbers <= n; a(1) = 1.
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 3, 1, 2, 3, 3, 1, 6, 1, 4, 4, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 6, 1, 2, 5, 1, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 8, 5, 2, 3, 8, 1, 7, 7, 4, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 9
OFFSET
1,6
COMMENTS
Ordinal transform of A034699.
LINKS
MAPLE
b:= proc() 0 end:
a:= proc(n) option remember; local t;
t:= max(1, seq(i[1]^i[2], i=ifactors(n)[2]));
b(t):= b(t)+1
end:
seq(a(n), n=1..120); # Alois P. Heinz, Apr 30 2018
MATHEMATICA
f[n_] := Max[Power @@@ FactorInteger[n]];
b[_] = 0;
a[n_] := With[{t = f[n]}, b[t] = b[t]+1];
Array[a, 105] (* Jean-François Alcover, Jan 03 2022 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A034699(n) = if(1==n, n, fordiv(n, d, if(isprimepower(n/d), return(n/d))));
v303759 = ordinal_transform(vector(up_to, n, A034699(n)));
A303759(n) = v303759[n];
CROSSREFS
Cf. A000961 (positions of ones), A034699.
Cf. also A078899, A284600, A302789.
Sequence in context: A356553 A324369 A276781 * A330754 A330753 A082068
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 30 2018
STATUS
approved