login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303758
a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A002322(k) = A002322(n), where A002322 is Carmichael lambda.
3
1, 1, 1, 2, 1, 3, 1, 4, 2, 2, 1, 5, 1, 3, 3, 4, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 6, 1, 6, 1, 1, 3, 2, 3, 7, 1, 3, 4, 7, 1, 8, 1, 4, 5, 2, 1, 8, 2, 2, 3, 6, 1, 4, 3, 9, 5, 2, 1, 9, 1, 2, 10, 4, 7, 5, 1, 5, 3, 8, 1, 11, 1, 2, 4, 6, 3, 9, 1, 10, 1, 2, 1, 12, 6, 3, 3, 6, 1, 10, 11, 4, 4, 2, 3, 2, 1, 4, 5, 5, 1, 7, 1, 12, 13
OFFSET
1,4
COMMENTS
Ordinal transform of f, where f(1) = 0 and f(n) = A002322(n) for n > 1.
LINKS
FORMULA
Except for a(2) = 1, a(n) = A303756(n).
MATHEMATICA
a[1] = 1; a[n_] := With[{c = CarmichaelLambda[n]}, Select[Range[2, n], c == CarmichaelLambda[#]&] // Length];
Array[a, 1000] (* Jean-François Alcover, Sep 19 2020 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A002322(n) = lcm(znstar(n)[2]); \\ From A002322
Aux303758(n) = if(1==n, 0, A002322(n));
v303758 = ordinal_transform(vector(up_to, n, Aux303758(n)));
A303758(n) = v303758[n];
CROSSREFS
Cf. A002322.
Cf. also A303756, A303757.
Sequence in context: A238800 A375266 A067734 * A161904 A360678 A346697
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 30 2018
STATUS
approved